Diluted NH₄F-Based Wet Chemistry for Pre-Gate Clean

J. H. Ye¹, T. H. Bok^{1,2}, S. F. Y. Li², Eric Teo³, B. J. Cho³, Debora Poon³, Alex See⁴, Simon, Y. M. Chooi⁴, Lap Chan⁴

¹Institute of Materials Research and Engineering 3 Research Link, Singapore 117602, Republic of Singapore

²Department of Chemistry, 3 Science Drive National University of Singapore, Singapore 117543, Republic of Singapore

³Depratment of Electrical and Computer Science, 10 Kent Ridge Crescent, National University of Singapore, Singapore 119260, Republic of Singapore

⁴Technology Development Department, Chartered Semiconductor Manufacturing Ltd, 60 Woodlands Industrial Park D, Street Two, Singapore 738406, Republic of Singapore

Ultra-clean and atomically flat Si(100) surface will be required at pre-gate clean step in the future CMOS device manufacturing.1 Currently, RCAbased cleanings are predominant in semiconductor manufacturing, which may not meet demanding requirements as the electronic devices are shrinking.² To challenge this task, alternative chemistries and processes have to be investigated in terms of cost of ownership and process performance.³⁻⁵ In the present work, we will focus on a two step process consisting of a oxidation and a diluted NH₄F-based solution for pre-gate clean. We have used scanning tunnelling microscopy (STM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and total reflection X-ray fluorescence spectrometry (TXRF) to study the silicon surfaces after treatment and correlate them to electrical properties of thin gate oxide. Our results indicate that ultra-clean and smooth Si(001) surfaces obtained by treatment with various NH₄F-based solutions has better performance than those treated with modified RCA clean. We emphasize that our cleaning chemistry is much more cost effective than RCA clean by reducing a lot of chemicals in pre-gate clean step.

Acknowledgements

One of the authors (J. H. Ye) are grateful to the National Science and Technology Board (NSTB) of Singapore for the financial support (NSTB/172/2/1-12).

References

- [1] SIA International Technology Roadmap for Semiconductors 1999th Edition, Front End Processes.
- [2] Kern W., Ed., Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology and Application, Noyes Publication, New Jersey, 1993.
- [3] M. Meuris et al., Solid State Technology, July (1995) 109.
- [4] T. Ohmi, J. Electrochem. Soc., 143 (1996) 2957.

[5] M. Miyashita, T. Tusga, K. Makihara, T. Ohmi, J.Electrochem. Soc., 139 (1992) 2133.